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Abstract

Birth defects are a leading cause of infant morbidity and mortality worldwide. The vast majority 

of birth defects are nonsyndromic, and although their etiologies remain mostly unknown, evidence 

supports the hypothesis that they result from the complex interaction of genetic, epigenetic, 

environmental, and lifestyle factors. Since our last review published in 2002 describing the basic 

tools of genetic epidemiology used to study nonsyndromic structural birth defects, many new 

approaches have become available and have been used with varying success. Through rapid 

advances in genomic technologies, investigators are now able to interrogate large portions of the 

genome at a fraction of previous costs. With next generation sequencing (NGS), research has 

progressed from assessing a small percentage of single nucleotide polymorphisms (SNPs) to 

assessing the entire human protein-coding repertoire (exome) – an approach that is starting to 

uncover rare but informative mutations associated with nonsyndromic birth defects. Here we 

report on the current state of genetic epidemiology of birth defects and comment on future 

challenges and opportunities. We consider issues of study design, and we discuss common variant 

approaches including candidate gene studies and genome-wide association studies (GWAS). We 

also discuss the complexities embedded in exploring gene-environment interactions. We complete 

our review by describing new and promising NGS technologies and examining how the study of 
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epigenetic mechanisms could become the key to unraveling the complex etiologies of 

nonsyndromic structural birth defects.

Research on birth defects in the post-genomic era

On April 14th, 2003, the Human Genome Project (HGP) was completed. To celebrate the 

10th year anniversary, JAMA published a thematic issue on genomics on April 10th, 2013. In 

2002, in a commentary published in the Archives of Pediatrics and Adolescent Medicine1, 

we described the basic tools of genetic epidemiology as applied to the study of 

nonsyndromic structural birth defects. Since that time, many new approaches have become 

available to discover genetic factors leading to birth defects, and epigenetics has also come 

to the forefront as an important contributing factor. Here we present an updated review of 

genetic epidemiology and birth defects, focusing on these new approaches.

The prevalence of structural birth defects varies globally2, ranging from approximately 3% 

to 6% of all live births. These birth defects are a leading cause of infant mortality, and are 

more prevalent than most chronic diseases of childhood such as autism3, pediatric cancers4, 

and Type I diabetes.5 Most structural birth defects develop early in embryogenesis, during 

the first 10 weeks of pregnancy, and the majority of these defects occur in isolation affecting 

only one organ system. Despite recent progress in finding highly informative mutations in 

some cases a majority of nonsyndromic birth defects still does not appear to be accounted 

for by a single gene or chromosomal abnormality. The most prevalent defects are orofacial 

clefts, heart, neural tube, and limb defects.6 When birth defects are not associated with 

known multi-organ syndromes; they are referred to as nonsyndromic defects. The etiologies 

of most nonsyndromic structural birth defects remain incompletely understood, and most are 

thought to result from a complex interplay between genetic, epigenetic, environmental, and 

lifestyle factors.7 Maternal lifestyle factors, such as smoking, can alter developmental 

processes and expression of key developmental genes, such as GATA4, and the impact of 

environmental exposures and lifestyle on the developing fetus can in turn be influenced by 

maternal and fetal genetic susceptibilities.

While prior research on nonsyndromic birth defects has focused largely on the independent 

roles of environmental and/or lifestyle exposures and genetics8, epigenetic causes have now 

begun to receive increased attention in this and many other human diseases. As early as 

1940, Waddington, a British embryologist, geneticist, and philosopher of science, defined 

epigenetics as “…the interactions of genes with their environment which bring the 

phenotype into being”.9 Although studies on epigenetics and birth defects are still limited, 

they are very important as they may help to establish the molecular basis for gene-

environment interactions.8

Embryogenesis requires an intricate coordination of cell migration, proliferation, and death 

that ultimately determines three-dimensional events in embryo formation and development. 

The complexity of embryogenic processes requires that multiple genes and biological 

pathways are involved in an intricate series of events that are susceptible to perturbations 

due to environmental exposures or maternal conditions10. In the following sections we will 

(a) review current approaches to identify genetic factors associated with birth defects, (b) 
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introduce potential epigenetic approaches, and (c) provide a perspective on the challenges 

and opportunities for future studies.

Candidate Gene Studies

Studies to identify etiologies of nonsyndromic birth defects in humans are for the most part 

limited to demonstrating association between genetic variants and birth defect phenotypes. 

Such association studies are most readily compared with traditional case-control 

epidemiologic designs. Population-based samples of cases and controls or small nuclear 

families (mother, father and child) or both are enrolled in a study in which the investigator 

compares the frequencies of specific genetic variants, polymorphisms, in affected and 

unaffected individuals. Such comparisons could include the index children as well as one or 

both parents.

Once it has been established that genetic variations impact the occurrence of a particular 

birth defect, studies are designed to identify and evaluate candidate genes. Candidate genes 

are those that have been proven or are believed to be associated with the malformation from 

animal studies, known or suspected developmental and signaling pathways, or from studying 

a small number of human pedigrees, and thus need to be confirmed in large, carefully 

selected, and well characterized human population samples. The selection of appropriate 

candidate genes is a key step in such studies. Knowledge of the pathogenesis of the 

malformation and the function of one or more proteins implicated in the disease can 

facilitate the identification of a suitable candidate gene. Genes that are known to be 

associated with variations in biologically relevant metabolic processes also may be selected 

as candidate genes. For example, several studies have demonstrated the protective effect of 

maternal periconceptional intake of folic acid on the occurrence of orofacial clefts11, neural 

tube defects12, and cardiac defects.13 Subsequently several studies have investigated the 

association between genetic polymorphisms in the folate metabolic pathway and the risk of 

these three defect groups.14–16

Single nucleotide polymorphisms (SNPs) are the most common sources of variation in 

human genomes.17 Each SNP is a difference in a single nucleotide at a specific site within 

the genome. For example, a SNP may form by substituting the nucleotide cytosine with the 

nucleotide thymine at a specific genomic location, annotated as C>T. If both of these 

variants (alleles) are compatible with life, then they can be present at detectable frequencies 

in the general population. In fact, we now know that there are approximately 7 million SNPs 

with a minor allele frequency (MAF) of over 5%.18 Until completion of the International 

HapMap Project in 2009, population- or family-based studies of candidate genes were 

limited to the detection of associations between phenotypes of interest and only a small 

number of functional SNPs within candidate genes. By identifying a dense map of common 

variants and their correlations with each other (i.e. linkage disequilibrium), investigations 

such as the International HapMap Project and the 1000 Genomes Project (Figure 1) have 

made it possible to test for associations between birth defects and common (MAF>5% in the 

population) or even somewhat rarer genetic variants within each gene.19,20 In the past 5 

years, multiple reviews of candidate gene studies and birth defects have been published. Key 

pathways that have been implicated in the development of orofacial clefts and neural tube, 

Hobbs et al. Page 3

JAMA Pediatr. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heart, and kidney defects include the Wnt signaling pathway, the BMP signaling pathway, 

the Hedgehog signaling pathway and variants in genes coding for key enzymes in the folate/

homocysteine and oxidative stress pathways 21–26.

Genome Wide Association Studies (GWAS) and Copy Number Variants 

(CNVs)

Candidate gene or pathway approaches are limited by their reliance on preexisting 

knowledge of relevant pathways and/or mechanisms that may adversely impact 

embryogenesis. With the completion of the HapMap Project and the advances in technology 

that provide platforms to genotype large number of SNPs efficiently, GWAS was introduced 

as a popular method for studying common but genetically complex human diseases.27 In 

contrast to candidate-gene studies, GWAS are not limited by prior knowledge but rather take 

an agnostic approach in which no SNP is considered, a priori, to have a higher likelihood of 

being associated with the relevant phenotype than any other SNP in the genome.28 Between 

January 2005 and December 2012, over 1350 GWAS studies were reported. With varying 

success, GWAS have identified common SNPs associated with risks for specific pediatric or 

adult diseases, but only a few have been completed on birth defects, including one on 

hypospadias29 and several on nonsyndromic cleft lip with or without cleft palate (NSCL/P). 

Mangold et al. identified two loci, in chromosome bands 17q22 and 10q25.3, which were 

associated with this type of birth defect,30 while the other three studies identified strong 

associations between NSCL/P and a locus in 8q24.21.31–33

These findings support the utility of GWAS for identifying novel chromosomal regions 

associated with birth defects. However, most genetic studies of nonsyndromic birth defects 

continue to rely on candidate SNPs, leaving most of the genome unexplored.34,35 Thus, 

there is a need to comprehensively explore the genome to identify new regions harboring 

genes associated with birth defects.36 In addition to SNPs, which affect only a single 

nucleotide base, multiple lines of evidence indicate that copy number variants (CNVs) can 

play an important role in the etiology of some cases of birth defects. CNVs are defined as 

DNA sequences, ranging from kilobases to megabases in length, which are present in 

variable copy number in comparison to a reference genome.37 In the past decade, molecular 

techniques such as array-based comparative genomic hybridization (aCGH), genotyping 

microarrays, and high throughput DNA sequencing have given a much richer picture of this 

form of genetic variation, and CNVs have increasingly been discovered to be associated 

with birth defects. For example, a survey of CNVs in 114 subjects with tetralogy of Fallot38 

and their unaffected parents identified 11 de novo CNVs that were absent or extremely rare 

in >2,000 controls, and pathogenic CNVs affecting the GATA4 and NODAL genes have been 

found in more than one study of congenital heart disease.39 Rare and/or de novo CNVs have 

also been implicated in microphthalmia,40 congenital diaphragmatic hernia,41 cleft lip 

and/or palate,42 other craniofacial defects43 and renal defects.44

For most GWAS, replication and validation of findings is necessary to separate true 

relationships from chance findings (Type 1 statistical errors). Genetic variants identified by 

GWAS are theoretically in linkage disequilibrium with functional variants that may be 

causal. To identify causal variants, targeted resequencing of genomic regions in close 
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proximity to selected SNPs, and whole- exome sequencing are new technological advances 

that hold considerable promise. In contrast to SNPs, which are often simply regional 

markers, CNV associations with birth defects are more likely to be directly causal of the 

phenotype being studied - via gene dosage increase or decrease, direct gene disruption, and 

cis-acting effects via disruption of gene regulatory sequences.45

Gene-environment Interactions

Genetic predispositions in conjunction with environmental influences are thought to be 

implicated in most birth defects. However, investigations into birth defects and interactions 

between functional or marker SNPs and environmental or lifestyle exposures are few.8 This 

paucity of studies may in part reflect the difficulty of obtaining robust genetic and 

environmental measures on the same samples, and the increased statistical power needed to 

detect gene-environment interactions. Nonetheless, there have been some indications of an 

interaction between functional SNPs in the methyl donor pathway and the beneficial effects 

of folic acid supplementation against NTDs and other birth defects.35

Next Generation Sequencing (NGS) Technologies

The first human genome was sequenced over a period of 10 years using classical Sanger 

(dideoxy terminator) sequencing, at a cost of almost $3 billion.46 “Next-generation” 

massively parallel sequencing (NGS) has exploded into the research and clinical genetics 

arena since its availability in 2005, with major advantages including markedly reduced 

sequencing time, reduced cost per nucleotide base, and substantial increases in data 

output.47 With new technologies, a genome can be sequenced within days at a current cost 

less than $10,000. Reviews detailing NGS chemistries and the practical advantages of 

specific platforms have been published.48–50 Data storage and protection, data analysis, 

clinical interpretation, and ethical issues, such as whether to report incidental, potentially 

adverse, findings to the patient or family, remain major challenges in the incorporation of 

NGS into the clinical arena.51,52

For the discovery and clinical testing of genes implicated in common birth defects such as 

CHDs, neural tube defects (NTDs), and cleft lip and palate (CL/P), different NGS-based 

approaches may be utilized. One approach is to select candidate genes for targeted deep 

resequencing. For conditions in which multiple genes with strong evidence of disease 

pathogenicity exist, such as those identified through GWAS and CNV studies, a targeted 

resequencing approach may be warranted. Although targeted NGS gene panels are offered 

clinically for certain conditions such as mitochondrial disorders,51 they are not yet offered 

clinically for the major types of non-syndromic birth defects. Another approach is the 

interrogation of the exome (all gene exons, that is, all protein coding regions) of the genome. 

Although the human exome consists of only 1–2% of the entire genome, it is estimated that 

up to 85% of disease-causing mutations are harbored within it. The merits of sequencing the 

exome as a diagnostic tool have been delineated and exome sequencing is starting to aid in 

the diagnosis and treatment of inherited conditions.48,52 Whole genome sequencing is also 

available, but to date the sequencing cost and the difficulties associated with data 

warehousing, analysis and interpretation remain prohibitive.

Hobbs et al. Page 5

JAMA Pediatr. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NGS technology holds promise for non-syndromic birth defects research and genetic 

diagnosis because 1) it allows the simultaneous analysis of the many candidate genes that 

have been identified so far; and 2) the technology is capable of detecting rare genetic 

variation. Although GWAS have identified many loci associated with complex traits, 

common genetic variation accounts for only a small percentage of heritability.53 Thus, 

identification of rare genetic variation may yield larger effect sizes in complex diseases, 

including isolated birth defects.

The use of NGS for discovering causal mutations in non-syndromic birth defects is still in its 

early stages. NGS was used recently to show that de-novo mutations contribute to 

approximately 10% of severe CHD.54 Strikingly, several genes encoding histone modifying 

and chromatin remodeling enzymes, such as MLL2, CHD7, and KDM5-A and –B, were 

found mutated in that study, implicating epigenetic alterations in CHD pathogenesis. 

Likewise, NGS approaches may become fruitful for finding mutations, such as those already 

known in the HNF1B and PAX2 genes, which can underlie congenital kidney 

malformations.55 Genome scanning methods for CNVs continue to identify lesions 

underlying CHD, some predisposing to it generally, and others with lesion specificity56 and 

it can be expected that additional recurrent CNVs will detected in nonsyndromic birth defect 

cases using NGS.

Clinical Testing using NGS

NGS targeted resequencing of candidate genes, whole exome sequencing, and even whole 

genome sequencing are being offered clinically in a growing number of laboratories. The 

GeneTests website57 and the NIH genetic testing registry58 provide valuable resources for 

clinicians to identify clinical genetic testing laboratories. Recently, the merits, 

considerations, and challenges of using NGS technologies in a clinical diagnostic setting 

have been discussed in publications through the American College of Medical Genetics 

(ACMG) and the Association for Molecular Pathology (AMP).59,60 Although resequencing 

assays are clinically available for complex diseases including cardiomyopathy,61 autism 

spectrum disorder62 and intellectual disability,63 targeted assays using NGS are not yet 

available for non-syndromic birth defects such as CHDs, NTDs and CL/P. Whole exome 

sequencing is a potential genetic testing option for these conditions, but large research 

studies are only now being conducted in non-syndromic birth defects. Nonetheless, the 

apparent multigenic nature of non-syndromic birth defects makes NGS experimental 

approaches ideal for gene discovery and further pathogenic mutation characterization. 

Overall, the evidence accumulated through many dedicated research studies suggests that 

non-syndromic CHDs, NTDs, and CL/P may be caused by multiple rare, familial, genetic 

mutations, interacting with maternal genotype and exposures. Large population studies 

utilizing NGS may delineate genetic causes of common birth defects, and may aid in 

preconception risk and guide future therapeutic interventions.

Epigenetic Alterations in Non-syndromic Birth Defects

Despite the tremendous advances in human genetics enabled by the HGP and brought to 

fruition with GWAS and NGS, many aspects of human embryology and biology still cannot 
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be adequately explained by genetics alone. Normal embryogenesis requires the specification 

of a multitude of cell types/organs that depend on transcriptional regulation programmed by 

epigenetic mechanisms, namely modifications to DNA and its associated proteins that define 

the distinct gene expression profiles for individual cell types at specific developmental 

stages. Disruption of such control mechanisms is associated with a variety of diseases with 

behavioral, endocrine or neurologic manifestations, and quite strikingly with disorders of 

tissue growth, which will in all likelihood include structural birth defects. As a precedent, 

several well-studied syndromic birth defects, including Prader-Willi syndrome, Angelman 

syndrome, Beckwith-Wiedemann syndrome and Russell-Silver syndrome are known to be 

caused by loss of imprinting, uniparental disomy, or deletion/mutation of epigenetically 

regulated genes.64

An epigenetic trait can be defined as a “stably (somatically) heritable phenotype resulting 

from changes in a chromosome without alterations in the DNA sequence”.65 Several classes 

of epigenetic phenomena have been identified and recently reviewed.8,66 Epigenetic 

patterns, essential for controlling gene expression in normal growth and development, are 

established by a number of mechanisms including DNA methylation at cytosine residues in 

CpG dinucleotides and covalent modifications of histone proteins, as well as by less well 

understood mechanisms controlling long-range chromatin architecture within the cell 

nucleus. DNA methylation involves the transfer of a methyl group to cytosine in a CpG 

dinucleotide, catalyzed by DNA methyltransferase enzymes that establish and maintain 

these patterns through cell division. Importantly DNA methylation has been shown to be 

essential for normal development.66,67 DNMT1, the major maintenance methylase, has a 

high affinity for hemimethylated DNA68 and it therefore acts to propagate methylation 

patterns in somatic cell divisions, while other enzymes, such as DNMT3A-DNMT3L, are 

responsible for initiating the epigenetic patterns. Importantly, there is already some evidence 

for an interaction of environment with epigenetics. Research on mice with a mutation in the 

Agouti gene has provided an excellent example of how maternal diet and epigenetics may 

affect fetal phenotypes.69 This model has shown that variations in maternal dietary 

constituents affecting the methyl donor pool, such as folic acid, can result in alterations in 

coat color in the offspring, as a result of differential CpG methylation.69,70 As another 

example, with clinical implications, a high folate diet given to H. felis-infected gastric 

cancer-prone mice at weaning prevented the development of gastric dysplasia and cancer.71

Many techniques, which we reviewed recently,64 have been developed to study DNA 

methylation. The gold standard for comprehensive analysis of the methylation status of CpG 

sites, that is, DNA methylation patterns, is sodium bisulfite chemical conversion of DNA.72 

This procedure deaminates non-methylated deoxycytidine (dC) to deoxyuracyl (dU) 

residues; during subsequent PCR amplification, the latter are converted to A/T base pairs. 

However, if the C is methylated, the DNA sequence obtained after PCR does not change. 

Methylation-specific PCR or Pyrosequencing using bisulfite converted DNA provide 

quantitative measurements of DNA methylation levels, while another approach, which has 

now been made high throughput via NGS, involves amplification of bisulfite PCR products 

followed by sequencing of clones. This more thorough approach permits DNA methylation 

levels of a large number of contiguous CpG sites to be quantified, and the precise patterns of 
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methylation, including clonal heterogeneity and allele-specificity, to be displayed. By 

combining sodium bisulfite conversion and microarrays or NGS, genome-wide DNA 

methylation patterns can be determined essentially genome-wide. A number of initiatives 

have now been implemented to define human epigenetic patterns at high resolution with 

complete genomic coverage, with the goal of integrating epigenetics into the study of 

common but complex human diseases.73 These new technologies and approaches may 

provide keys to unravel genetic and environmental factors that impinge on epigenomes to 

affect normal processes in embryological development and lead to human malformations 

when these processes go awry. In searching for evidence of “epigenome x environment” 

interactions in datasets from such studies, it will be crucial to take the cell types being 

sampled and the age of the subjects into account as methylation patterns are highly cell type-

specific and, for some genes, can change with age.74 It will also be important to remember 

that the genetic makeup of an individual exerts a strong influence on his/her epigenome: 

specifically, multiple studies have now shown a strong influence of human haplotypes, that 

is, clusters of SNPs in a given chromosomal region, on the patterns of DNA methylation in 

that region.75

The Future: linking genome, epigenome and environment in non-syndromic 

birth defects

We concluded our 2002 article by stating that identification of genes associated with birth 

defects does not lead to an immediate understanding of the relation between the gene and the 

birth defect with which it is associated. Identification “is only the first step in a long path to 

understanding the cause of the condition and ultimately to find preventive or corrective 

strategies.1 As new technologies are made available, genetic epidemiologists are quick to 

utilize these new platforms to generate databases that seem to be ever-increasing in size. Our 

increased understanding of the importance of epigenetics in the development of birth defects 

suggests that an approach that simultaneously investigates genome-wide genetic and 

epigenetic variation in participants for whom environmental exposure data has been 

obtained may be a major step forward. Such studies may help to establish the mechanistic 

link between genetic variants and environmental exposures.
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Figure 1. 
Stepping stones: Projects that made genome-wide association studies (GWAS) possible.
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